
Masoud Hamad
Web Security: Understanding SQL Injection
A Comprehensive Guide to SQL, Web Applications, and Security Risks



Introduction to SQL
● SQL (Structured Query Language) is used to interact with databases.

● Common operations include:

● - Querying data: SELECT name FROM employees WHERE age > 30;

● - Adding data: INSERT INTO employees (name, age) VALUES ('John', 35);

● - Updating data: UPDATE employees SET age = 36 WHERE name = 

'John';

● - Deleting data: DELETE FROM employees WHERE age < 25;



Components of Web Applications

● Frontend: Collects user input via forms.

● Backend: Processes input and generates SQL queries.

● Database: Executes the SQL query and sends results back.

● Display: Results are shown in the application.

● Example Flow: User Input → Backend Query → Database Query 

Execution → Result Display



What is SQL Injection?

● A vulnerability allowing attackers to manipulate SQL queries 

through user input.

● It can bypass authentication, retrieve sensitive data, or 

damage databases.

● Example:

● SELECT * FROM users WHERE username = 'admin' AND 

password = '';



SQL Injection Example - Login Bypass

● Scenario: A login form where attackers enter malicious input.

● Input:

● Username: admin' --

● Password: (Leave blank)

● Resulting Query:

● SELECT * FROM users WHERE username = 'admin' --' AND 

password = '';



SQL Injection Example - Data Leakage

● Scenario: A search form vulnerable to SQL Injection.
● Input:
● ' UNION SELECT credit_card_number, expiry_date FROM 

credit_cards --
● Resulting Query:
● SELECT name, email FROM users WHERE name = '' UNION 

SELECT credit_card_number, expiry_date FROM 
credit_cards --';



Types of SQL Injection

● Error-Based SQL Injection: Uses database error messages to 
extract data.

● Union-Based SQL Injection: Combines results of two or 
more queries.

● Blind SQL Injection: Relies on observing application 
behavior.

● Time-Based Blind SQL Injection: Uses time delays to infer 
information



Impacts of SQL Injection

• Real-World Consequences:

- Data theft (e.g., credit cards, personal info).

- Unauthorized access and privilege escalation.

- Tampering with or deleting critical data.

- Reputation damage and financial losses.



Preventing SQL Injection

Effective Prevention Techniques:

- Parameterized Queries: SELECT * FROM users WHERE 

username = ? AND password = ?;

- Input Validation: Reject unexpected or dangerous characters.

- Database Access Controls: Limit permissions for queries.

- Using ORM Tools: Like Hibernate or Django ORM.



Preventing SQL Injection

• Security Testing: Regular scans for vulnerabilities.



Tools for Testing SQL Injection

● Burp Suite: Web vulnerability scanner.

● SQLMap: Automated SQL injection testing.

● OWASP ZAP: Comprehensive security testing.



Lab

https://github.com/massoudhamad/rl4eng-sql-injection


